Skip to main content

Open Educational Resources: Statistics

Library Resources for Statistics

We provide access to content such as online books, journals and image collections that can be used to lower or remove student textbook costs for students.  To learn more, see the following:


On this page you will find several open Statistics textbooks along with supplemental material and a few lecture videos.  

The purpose of these discipline specific pages is to showcase content that might be of interest to faculty who are considering adopting open educational resources for use in their classes. This list of content is by no means exhaustive.  The nature of open educational resources is very collaborative and it is in that spirit that we encourage any comments about the content featured on this page or recommendations of content that are not already listed here.


Statistics  -OpenStax College 

Introductory Statistics follows the scope and sequence of a one-semester, introduction to statistics course and is geared toward students majoring in fields other than math or engineering. This text assumes students have been exposed to intermediate algebra, and it focuses on the applications of statistical knowledge rather than the theory behind it. The foundation of this textbook is Collaborative Statistics, by Barbara Illowsky and Susan Dean, which has been widely adopted. Introductory Statistics includes innovations in art, terminology, and practical applications, all with a goal of increasing relevance and accessibility for students. We strove to make the discipline meaningful and memorable, so that students can draw a working knowledge from it that will enrich their future studies and help them make sense of the world around them. The text also includes Collaborative Exercises, integration with TI-83,83+,84+ Calculators, technology integration problems, and statistics labs.  -OpenStax

Senior Contributors:

  • Barbara Illowsky, De Anza College
  • Susan Dean, De Anza College

This work is licensed under a Creative Commons Attribution 3.0 Unported  License.

Creative Commons BY Logo

Statistics  -OpenIntro

The authors of this text intend for the reader to develop a foundational understanding of statistical thinking methods.  Statistics is an applied field with a wide range of practical applications which a student does not have to be a math expert to understand even when using real, interesting data. Emphasized in this text is the practical applications of statistical tools. The authors have highlighted their imperfections and how student can use them to learn about the real world.  -OpenIntro.

This textbook has been adopted by OU faculty member, Dr. Claude Miller.


  • David M. Diez, Google/YouTube, Quantitative Analyst
  • Christopher D. Barr, Harvard School of Public Health, Biostatistics
  • Mine Çetinkaya-Rundel, Duke University, Statistics

This text is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike license.

Creative Commons BY-NC-SA Logo

Combinatorics Through Guided Discovery  -Open Textbook Library

This book is an introduction to combinatorial mathematics, also known as combinatorics. The book focuses especially but not exclusively on the part of combinatorics that mathematicians refer to as “counting.” The book consists almost entirely of problems. Some of the problems are designed to lead you to think about a concept, others are designed to help you figure out a concept and state a theorem about it, while still others ask you to prove the theorem. Other problems give you a chance to use a theorem you have proved. From time to time there is a discussion that pulls together some of the things you have learned or introduces a new idea for you to work with. Many of the problems are designed to build up your intuition for how combinatorial mathematics works.  -Open Textbook Library


Kenneth Bogart, Dartmouth College, Mathematics

This text is licensed under a GNU Free Documentation License.

Online Stats Book  -David Lane

Online Statistics: An Interactive Multimedia Course of Study is a resource for learning and teaching introductory statistics. It contains material presented in textbook format and as video presentations. This resource features interactive demonstrations and simulations, case studies, and an analysis lab.  -David Lane

Lead Developer:

David Lane, Rice University, Statistics

This text is in the Public Domain

Public Domain logo

Think Stats: Probability and Statistics for Programmers -Allen B. Downey

Think Stats emphasizes simple techniques you can use to explore real data sets and answer interesting questions. The book presents a case study using data from the National Institutes of Health. Readers are encouraged to work on a project with real datasets. if you have basic skills in Python, you can use them to learn concepts in probability and statistics. Think Stats is based on a Python library for probability distributions (PMFs and CDFs). Many of the exercises use short programs to run experiments and help readers develop understanding. -Allen B. Downey


Allen B. Downey, Ph.D., Computer Science, Olin College

This text is licensed under a Creative Commons Attribution-NonCommercial 3.0 License.

Creative Commons BY-NC logo

Open Textbook Collections

Supplemental Materials

Flowing Data  -Nathan Yau

FlowingData explores how designers, statisticians, and computer scientists are using data to understand ourselves better — mainly through data visualization.  -Nathan Yau


Nathan Yau, Ph. D., University of California, Los Angeles, Statistics

Unless otherwise noted, graphics and text on this site are licensed under a Creative Commons Attribution-NonCommercial License. Original authors should be contacted regarding their work.

Creative Commons BY-NC

Probability and Statistics Videos  -Khan Academy

Khan Academy features a collection of tutorial videos on the subject of Probability and Statistics.  This collection features multiple videos on each of the following topics: independent and dependent events, probability and combinatorics, descriptive statistics, random variables and probability distributions, regression, and inferential statistics.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License.

Creative Commons BY-NC-SA

Lecture Videos

Probabilistic Systems Analysis and Applied Probability  -MIT OpenCourseware

This course focuses on the modeling and analysis of random phenomena and processes, including the basics of statistical inference. Nowadays, there is broad consensus that the ability to think probabilistically is a fundamental component of scientific literacy.  -MIT Open CourseWare


Prof. John Tsitsiklis, Massachusetts Institute of Technology, Electrical Engineering

Use of the MIT OpenCourseWare site and materials is subject to their Creative Commons License and other terms of use.


All original content on this page is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. All linked-to content adheres to its respective license.

Creative Commons License